Exact Medial Axis Computation for Circular Arc Boundaries
نویسندگان
چکیده
We propose a method to compute the algebraically correct medial axis for simply connected planar domains which are given by boundary representations composed of rational circular arcs. The algorithmic approach is based on the Divide-&-Conquer paradigm, as used in [2]. However, we show how to avoid inaccuracies in the medial axis computations arising from a non-algebraic biarc construction of the boundary. To this end we introduce the Exact Circular Arc Boundary representation (ECAB), which allows algebraically exact calculation of bisector curves. Fractions of these bisector curves are then used to construct the exact medial axis. We finally show that all necessary computations can be performed over the field of rational numbers with a small number of adjoint square-roots.
منابع مشابه
Exact computation of the medial axis of a polyhedron
We present an accurate algorithm to compute the internal Voronoi diagram and medial axis of a 3-D polyhedron. It uses exact arithmetic and exact representations for accurate computation of the medial axis. The algorithm works by recursively finding neighboring junctions along the seam curves. To speed up the computation, we have designed specialized algorithms for fast computation with algebrai...
متن کاملDistance functions and skeletal representations of rigid and non-rigid planar shapes
Shape skeletons are fundamental concepts for describing the shape of geometric objects, and have found a variety of applications in a number of areas where geometry plays an important role. Two types of skeletons commonly used in geometric computations are the straight skeleton of a (linear) polygon, and the medial axis of a bounded set of points in the k-dimensional Euclidean space. However, e...
متن کاملMedial axis computation for planar free-form shapes
We present a simple, efficient, and stable method for computing—with any desired precision—the medial axis of simply connected planar domains. The domain boundaries are assumed to be given as polynomial spline curves. Our approach combines known results from the field of geometric approximation theory with a new algorithm from the field of computational geometry. Challenging steps are (1) the a...
متن کاملExact Medial Axis Computation for Triangulated Solids with Respect to Piecewise Linear Metrics
We propose a novel approach for the medial axis approximation of triangulated solids by using a polyhedral unit ball B instead of the standard Euclidean unit ball. By this means we compute the exact medial axis MA(Ω) of a triangulated solid Ω with respect to a piecewise linear (quasi-) metric dB . The obtained representation of Ω by the medial axis transform MAT(Ω) allows for a convenient compu...
متن کاملComputational and Structural Advantages of Circular Boundary Representation
Boundary approximation of planar shapes by circular arcs has quantitative and qualitative advantages compared to using straight-line segments. We demonstrate this by way of three basic and frequent computations on shapes – convex hull, decomposition, and medial axis. In particular, we propose a novel medial axis algorithm that beats existing methods in simplicity and practicality, and at the sa...
متن کامل